Cho các số phức \({z_1},\,\,{z_2},\,\,{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\) và \(z_1^3 + z_2^3 + z_3^3 + {z_1}{z_2}{z_3} = 0\). Đặt \(z = {z_1} + {z_2} + {z_3}\), giá trị của \({\left| z \right|^3} - 3{\left| z \right|^2}\) bằng:
A. \( - 2\)
B. \( - 4\)
C. \(4\)
D. \(2\)
Lời giải của giáo viên
ToanVN.com
Do các giả thiết đã cho đúng với mọi cặp số phức \({z_1},\,\,{z_2},\,\,{z_3}\) nên ta chọn \({z_1} = {z_2} = 1\), kết hợp giả thiết ta có:
\(z_1^3 + z_2^3 + z_3^3 + {z_1}{z_2}{z_3} = 0 \Leftrightarrow 1 + 1 + z_3^3 + {z_3} = 0 \Leftrightarrow z_3^3 + {z_3} + 2 = 0 \Leftrightarrow {z_3} = - 1\), thỏa mãn \(\left| {{z_3}} \right| = 1\).
Khi đó ta có 1 cặp \(\left( {{z_1},\,\,{z_2},\,\,{z_3}} \right) = \left( {1;1; - 1} \right)\) thỏa mãn yêu cầu của bài toán. Khi đó \(z = {z_1} + {z_2} + {z_3} = 1 + 1 - 1 = 1\).
\( \Rightarrow {\left| z \right|^3} - 3{\left| z \right|^2} = 1 - 3.1 = - 2\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)?
Cho tứ diện \(ABCD\) có \(AB = CD = a.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(MN = \dfrac{{\sqrt 3 a}}{2},\) góc giữa đường thẳng\(AB\) và \(CD\) bằng:
Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\). Xét các điểm A, B thuộc \(\left( P \right)\) sao cho tiếp tuyến tại A và B của \(\left( P \right)\) vuông góc với nhau, diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành độ của A và B. Giá trị của \({\left( {{x_1} + {x_2}} \right)^2}\) bằng:
Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng
Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng
Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\)
Trong không gian \({\rm{Ox}}yz\) , cho hai điểm \(A\left( {1; - 1;2} \right)\) và \(B\left( {3;3;0} \right)\) . Mặt phẳng trung trực của đường thẳng \(AB\) có phương trình là
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng
Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là:
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\) . Hệ số góc \(k\) của tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng 1 bằng
Trong không gian \(Oxyz,\) điểm nào dưới đây thuộc đường thẳng \(\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 2}}{3}?\)
Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng:
Nghiệm của phương trình \({\log _3}\left( {2x - 1} \right) = 2\) là:


