Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\) và \(\left| z \right| + \left| y \right| + \left| z \right| \le 2\). Đặt \(z = {z_1} + {z_2} + {z_3}\), giá trị của \({\left| z \right|^3} - 3{\left| z \right|^2}\) bằng:
A. -2
B. -4
C. 4
D. 2
Lời giải của giáo viên
ToanVN.com
Do các giả thiết đã cho đúng với mọi cặp số phức \({z_1},{z_2},{z_3}\) nên ta chọn \({z_1} = {z_2} = 1\), kết hợp giả thiết ta có \(z_1^3 + z_2^3 + z_2^3 + {z_1}{z_2}{z_3} = 0 \Leftrightarrow 1 + 1 + z_3^3 + {z_3} = 0 \Leftrightarrow z_3^3 + {z_3} + 2 = 0 \Leftrightarrow {z_3} = - 1\), thỏa mãn \(\left| {{z_3}} \right| = 1\)
Khi đó ta có 1 cặp \(({z_1},{z_2},{z_2}) = (1;1; - 1)\) thỏa mãn yêu cầu của bài toán. Khi đó \(z = {z_1} + {z_2} + {z_3} = 1 + 1 - 1 = 1\) .
\( \Rightarrow {\left| z \right|^3} - 3{\left| x \right|^2} = 1 - 3.1 = - 2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với các số thực \(a,b > 0,a \ne 1\) tùy ý, biểu thức \({\log _{{a^2}}}\left( {a{b^2}} \right)\) bằng:
Cho khối trụ (T). Biết rằng một mặt phẳng chứa trục của (T) cắt (T) theo thiết diện là một hình vuông cạnh 4a. Thể tích khối trụ đã cho bằng:
Trong không gian Oxyz, cho các điểm \(A( - 1;2;1),B(2; - 1;4),C(1;1;4)\) . Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABC)?
Cho hàm số có bảng biến thiên
.png)
Hàm số đã cho đồng biến trên khoảng
Họ nguyên hàm của hàm số \(f(x) = 3{x^2} + {\mathop{\rm s}\nolimits} {\rm{inx}}\) là:
Trong không gian Oxyz, gọi d là đường thẳng qua A(1;0;2) cắt và vuông góc với đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 5}}{{ - 2}}\). Điểm nào dưới đây thuộc d?
Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số \(y = \frac{{x + 3}}{{x + 1}}\) tại hai điểm M, N sao cho độ dài MN nhỏ nhất:
Với hàm số f(x) tùy ý liên tục trên R , a < b, diện tích của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và các đường thẳng x = a, x = b được xác định theo công thức
Trong không gian Oxyz, cho hai điểm A(3;1; - 3),B(0; - 2;3) và mặt cầu (S): \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 1\) . Xét điểm M thay đổi luôn thuộc mặt cầu (S), giá trị lớn nhất của \(M{A^2} + 2M{B^2}\) bằng:
Cho số thực \(\alpha \) sao cho phương trình \({2^x} - {2^{ - x}} = 2cos(\alpha x)\) có đúng 2019 nghiệm thực. Số nghiệm của phương trình \({2^x} + {2^{ - x}} = 4 + 2cos(\alpha x)\) là:
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng xét dấu như sau:
.png)
Cho hình trụ (T) có chiều cao bằng 2a. Hai đường tròn đáy của (T) có tâm lần lượt là O và O1 và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy O1 lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện bằng:
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 2a và chiều cao bằng . Khoảng cách từ A đến mặt phẳng (SCD) bằng:
Cho a, b là các số thực thỏa mãn a + 6i = 2 - 2bi, với i là đơn vị ảo. Giá trị của a + b bằng
Giá trị lớn nhất của hàm số \(f(x) = \frac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn [1; 3] bằng


