Cho a, b, c, d là các số thực dương, khác 1 bất kì. Mệnh đề nào dưới đây đúng
A. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{c}{d}\)
B. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{d}{c}\)
C. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{d}{c}\)
D. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{c}{d}\)
Lời giải của giáo viên
ToanVN.com
Ta có: \({a^c} = {b^d} \Leftrightarrow \ln {a^c} = \ln {b^d} \Leftrightarrow c\ln a = d\ln b \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{d}{c}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Họ nguyên hàm của hàm số \(f\left( x \right) = 2\sqrt x + 3{\rm{x}}\) là
Cho hàm số y = f(x) liên tục trên R \ {1;2} và có bảng biến thiên như sau:
.png)
Phương trình \(f\left( {{2^{\sin x}}} \right) = 3\) có bao nhiêu nghiệm trên \(\left[ {0;\frac{{5\pi }}{6}} \right]\)
Cho hàm số y =f(x) có bảng biến thiên như sau:
.png)
Hàm số y = f(x) đồng biến trên khoảng nào sau đây?
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \({2^x} = {3^{{x^2}}}\) Tính \({x_1}+{x_2}\)
Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{\ln {\rm{x}}}}{{x - 1}}\)
Cho hàm số y = f(x) có bảng biến thiên như sau
.png)
Hàm số y = f(x)đạt cực đại tại
Cho hàm số y = f(x) liên tục trên R và là hàm số chẵn, biết \(\int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}} d{\rm{x}} = 1.\) Tính \(\int\limits_{ - 1}^1 {f\left( x \right)} d{\rm{x}}\)
Biết rằng \(\int\limits_1^e {x\ln {\rm{xdx}}} = a{{\rm{e}}^2} + b,a,b \in Q.\) Tính a + b
Gọi S là tập hợp tất cả các giá trị của tham số m sao cho GTNN của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là
Theo thống kê dân số thế giới đến tháng 01/2017, dân số Việt Nam có 94,970,597 người và có tỉ lệ tăng dân số là 1,03%. Nếu tỉ lệ tăng dân số không đổi thì đến năm 2020 dân số nước ta có bao nhiêu triệu người, chọn đáp án gần nhất
Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm \(M\left( {1;1;1} \right),{\rm{N}}\left( {1;0;{\rm{ - }}2} \right),{\rm{P}}\left( {0;1;{\rm{ - }}1} \right).\) Gọi \(G\left( {{x_0};{y_0};{z_0}} \right)\) là trực tâm tam giác MNP. Tính \({x_0} + {z_0}\)
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A\left( {2;1;0} \right),{\rm{B}}\left( {1;{\rm{ - }}1;3} \right).\) Mặt phẳng qua AB và vuông góc với mặt phẳng \(\left( P \right):x + 3y - 2{\rm{z}} - 1 = 0\) có phương trình là
Có bao nhiêu giá trị nguyên của tham số m để phương trình \(\sin 2x + cos2x + \left| {\sin x + cosx} \right| - \sqrt {co{s^2}x + m} - m = 0\) có nghiệm thực?
Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + 2,n \ge 1 \end{array} \right..\) Gọi \({S_n} = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ,,, + \frac{1}{{{u_n}{u_{n + 1}}}}.\) Tính \(\lim {S_n}\)
Rút gọn tổng sau \(S = C_{2018}^2 + C_{2018}^5 + C_{2018}^8 + ... + C_{2018}^{2018}\)


