Biết \(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\frac{1}{{\sqrt {{e^{2x}} + 1} - {e^x}}}{\rm{d}}x} = 1 + \frac{1}{2}\ln \frac{b}{a} + a\sqrt a - \sqrt b \) với \(a,{\rm{ }}b \in {Z^ + }.\) Tính \(P = a + b.\)
A. \(P=-1\)
B. \(P=1\)
C. \(P=3\)
D. \(P=5\)
Lời giải của giáo viên
ToanVN.com
Ta có \(I = \int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\frac{1}{{\sqrt {{e^{2x}} + 1} - {e^x}}}{\rm{d}}x} = \int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\left( {\sqrt {{e^{2x}} + 1} + {e^x}} \right){\rm{d}}x} = \int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\sqrt {{e^{2x}} + 1} {\rm{d}}x} + \int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {{e^x}{\rm{d}}x} .\)
\(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {{e^x}{\rm{d}}x} = {e^x}\left| \begin{array}{l}
^{\ln \sqrt 8 }\\
_{\ln \sqrt 3 }
\end{array} \right. = 2\sqrt 2 - \sqrt 3 .\)
\(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\sqrt {{e^{2x}} + 1} {\rm{d}}x} .\) Đặt \(t = \sqrt {{e^{2x}} + 1} \Leftrightarrow {t^2} = {e^{2x}} + 1\) suy ra \(2t{\rm{d}}t = 2{e^{2x}}{\rm{d}}x \Leftrightarrow {\rm{d}}x = \frac{{t{\rm{d}}t}}{{{e^{2x}}}} = \frac{{t{\rm{d}}t}}{{{t^2} - 1}}.\)
Đổi cận \(\left\{ \begin{array}{l}
x = \ln \sqrt 3 \to t = 2\\
x = \ln \sqrt 8 \to t = 3
\end{array} \right..\)
Khi đó \(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\sqrt {{e^{2x}} + 1} {\rm{d}}x} = \int\limits_2^3 {\frac{{{t^2}{\rm{d}}t}}{{{t^2} - 1}}} dt = \int\limits_2^3 {\left( {1 + \frac{1}{{{t^2} - 1}}} \right){\rm{d}}t} = \left( {t + \frac{1}{2}\ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right)\left| \begin{array}{l}
^3\\
_2
\end{array} \right. = 1 + \frac{1}{2}\ln \frac{3}{2}.\)
Vậy \(I = 1 + \frac{1}{2}\ln \frac{3}{2} + 2\sqrt 2 - \sqrt 3 \to \left\{ \begin{array}{l}
a = 2\\
b = 3
\end{array} \right. \to P = a + b = 5.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Biết \(\int\limits_0^\pi {\frac{{x{{\sin }^{2018}}x}}{{{{\sin }^{2018}}x + {{\cos }^{2018}}x}}{\rm{d}}x} = \frac{{{\pi ^a}}}{b}\) với \(a,b \in {Z^ + }.\) Tính \(P = 2a + b.\)
Biết \(\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{x\cos x}}{{\sqrt {1 + {x^2}} + x}}{\rm{d}}x} = a + \frac{{{\pi ^2}}}{b} + \frac{{\sqrt 3 \pi }}{c}\) với \(a, b, c\) là các số nguyên. Tính \(P = a - b + c.\)
Cho hàm số \(f(x)\) xác định trên \(\left( {0; + \infty } \right){\rm{\backslash }}\left\{ e \right\},\) thỏa mãn \(f'\left( x \right) = \frac{1}{{x\left( {\ln x - 1} \right)}},\) \(f\left( {\frac{1}{{{e^2}}}} \right) = \ln 6\) và \(f\left( {{e^2}} \right) = 3.\) Giá trị biểu thức \(f\left( {\frac{1}{e}} \right) + f\left( {{e^3}} \right)\) bằng
Biết \(I = \int\limits_1^e {\frac{{{{\ln }^2}x + \ln x}}{{{{\left( {\ln x + x + 1} \right)}^3}}}{\rm{d}}x} = \frac{1}{a} - \frac{b}{{{{\left( {e + 2} \right)}^2}}}\) với \(a,{\rm{ }}b \in {Z^ + }.\) Tính \(P = b - a.\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa mãn \(\int\limits_1^2 {f\left( {x - 1} \right){\rm{d}}x} = 3\) và \(f\left( 1 \right) = 4.\) Tích phân \(\int\limits_0^1 {{x^3}f'\left( {{x^2}} \right){\rm{d}}x} \) bằng
Biết \(\int\limits_1^2 {\ln \left( {9 - {x^2}} \right){\rm{d}}x} = a\ln 5 + b\ln 2 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in Z.\) Tính \(P = \left| a \right| + \left| b \right| + \left| c \right|.\)
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với mọi \(x \in R.\) Tính \(I = \int\limits_0^2 {f\left( x \right){\rm{d}}x} .\)
Cho các hàm số \(f(x), g(x)\) liên tục trên \(\left[ {0;1} \right],\) thỏa \(m.f\left( x \right) + n.f\left( {1 - x} \right) = g\left( x \right)\) với \(m, n\) là số thực khác 0 và \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = \int\limits_0^1 {g\left( x \right){\rm{d}}x} = 1.\) Tính \(m+n\)
Biết \(\int\limits_0^2 {\sqrt {\frac{{2 + \sqrt x }}{{2 - \sqrt x }}} {\rm{d}}x} = a\pi + b\sqrt 2 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in Z.\) Tính \(P = a + b + c.\)
Cho hàm số \(f(x)\) liên tục trên R và \(\int\limits_1^9 {\frac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} ,{\rm{ }}\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x = 2} .\) Tính tích phân \(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} .\)
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\) và thỏa \(\int\limits_0^{{x^2}} {f\left( t \right){\rm{d}}t} = x.\sin \left( {\pi x} \right)\). Tính \(f\left( {\frac{1}{4}} \right)\).
Biết \(\int\limits_1^2 {\frac{{{\rm{d}}x}}{{\left( {x + 1} \right)\sqrt x + x\sqrt {x + 1} }} = \sqrt a } - \sqrt b - c\) với \(a,{\rm{ }}b,{\rm{ }}c \in {Z^ + }.\) Tính \(P = a + b + c\).
Cho hàm số \(f(x)\) xác định trên \(R\backslash \left\{ {\frac{1}{2}} \right\},\) thỏa \(f'\left( x \right) = \frac{2}{{2x - 1}},{\rm{ }}f\left( 0 \right) = 1\) và \(f\left( 1 \right) = 2.\) Giá trị của biểu thức \(f\left( { - 1} \right) + f\left( 3 \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R thỏa \(f\left( {{x^5} + 4x + 3} \right) = 2x + 1\) với mọi \(x \in R.\) Tích phân \(\int\limits_{ - 2}^8 {f\left( x \right){\rm{d}}x} \) bằng
Cho hàm số \(y=f(x)\) là hàm số chẵn và liên tục trên đoạn \(\left[ { - \pi ;\pi } \right],\) thỏa mãn \(\int\limits_0^\pi {f\left( x \right){\rm{d}}x} = 2018.\) Giá trị của tích phân \(I = \int\limits_{ - \pi }^\pi {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}{\rm{d}}x} \) bằng


