Lời giải của giáo viên
ToanVN.com
Đặt \(I = \int\limits_2^3 {\left( {4x + 2} \right)\ln xdx} \).
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = \left( {4x + 2} \right)dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{x}\\v = 2{x^2} + 2x = 2x\left( {x + 1} \right)\end{array} \right.\)
\(\begin{array}{l} \Rightarrow I = \left. {\left[ {2x\left( {x + 1} \right)\ln x} \right]} \right|_2^3 - \int\limits_2^3 {\dfrac{{2x\left( {x + 1} \right)dx}}{x}} \\\,\,\,\,\,\,I = 24\ln 3 - 12\ln 2 - 2\int\limits_2^3 {\left( {x + 1} \right)dx} \\\,\,\,\,\,\,I = 24\ln 3 - 12\ln 2 - 2\left. {\left( {\dfrac{{{x^2}}}{2} + x} \right)} \right|_2^3\\\,\,\,\,\,\,I = 24\ln 3 - 12\ln 2 - 2\left( {\dfrac{{15}}{2} - 4} \right)\\\,\,\,\,\,\,I = 24\ln 3 - 12\ln 2 - 7 = a + b\ln 2 + c\ln 3\\ \Rightarrow \left\{ \begin{array}{l}a = - 7\\b = - 12\\c = 24\end{array} \right. \Rightarrow a + b + c = - 7 - 12 + 24 = 5\end{array}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)?
Cho tứ diện \(ABCD\) có \(AB = CD = a.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(MN = \dfrac{{\sqrt 3 a}}{2},\) góc giữa đường thẳng\(AB\) và \(CD\) bằng:
Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\). Xét các điểm A, B thuộc \(\left( P \right)\) sao cho tiếp tuyến tại A và B của \(\left( P \right)\) vuông góc với nhau, diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành độ của A và B. Giá trị của \({\left( {{x_1} + {x_2}} \right)^2}\) bằng:
Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng
Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng
Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\)
Trong không gian \({\rm{Ox}}yz\) , cho hai điểm \(A\left( {1; - 1;2} \right)\) và \(B\left( {3;3;0} \right)\) . Mặt phẳng trung trực của đường thẳng \(AB\) có phương trình là
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\) . Hệ số góc \(k\) của tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng 1 bằng
Trong không gian \(Oxyz,\) gọi \(d\) là đường thẳng qua \(A\left( {1;\;0;\;2} \right)\) cắt và vuông góc với đường thẳng \({d_1}:\;\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 5}}{{ - 2}}.\) Điểm nào dưới đây thuộc \(d?\)
Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là:
Trong không gian Oxyz, cho hai điểm \(A\left( {3;1; - 3} \right),\,\,B\left( {0; - 2;3} \right)\) và mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 1\). Xét điểm M thay đổi luôn thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{A^2} + 2M{B^2}\) bằng:
Trong không gian \(Oxyz,\) điểm nào dưới đây thuộc đường thẳng \(\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 2}}{3}?\)


