Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có bảng biến thiên:
.png)
Tìm tất cả các giá trị của m để bất phương trình \(f\left( {\sqrt {x - 1} + 1} \right) \le m\) có nghiệm?
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A( - 1; - 1;0);B(3;1; - 1)\). Điểm M thuộc trục Ox và cách đều hai điểm A, B có tọa độ là:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A(1;2; - 1);B(2;1;0)\) và mặt phẳng \(\left( P \right):2x + y - 3z + 1 = 0\). Gọi (Q) là mặt phẳng chứa A, B và vuông góc với (P). Phương trình mặt phẳng (Q) là:
Cho \(0 < a < 1\). Trong các mệnh đề sau, mệnh đề nào sai:
Hàm số \(y = f\left( x \right) = \left( {x - 1} \right).\left( {x - 2} \right).\left( {x - 3} \right)...\left( {x - 2018} \right)\) có bao nhiêu điểm cực đại?
Cho hình lập phương \(ABCD.A'B'C'D'\). Tính góc giữa hai đường thẳng AC và A'B.
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của m để \(\left( P \right) \bot \left( Q \right)\) là:
Đồ thị hàm số nào dưới đây có tâm đối xứng là điểm \(I\left( {1; - 2} \right)\)?
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây; hãy chọn dãy số giảm:
Hệ số của số hạng chứa \(x^7\) trong khai triển nhị thức \({\left( {x - \frac{2}{{x\sqrt x }}} \right)^{12}}\) (với \(x>0\)) là:
Thiết diện qua trục của một hình trụ là một hình vuông có cạnh bằng \(2a\). Thể tích khối trụ bằng:
Cho phương trình: \({\sin ^3}x - 3{\sin ^2}x + 2 - m = 0\). Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm:
Biết đường thẳng \(y=x-2\) cắt đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) tại hai điểm phân biệt A, B có hoành độ lần lượt \({x_A},{x_B}\) Khi đó \({x_A} + {x_B}\) là:
Số nghiệm của phương trình: \({\log _2}x + 3{\log _x}2 = 4\) là:


