Biết rằng hai số phức \({{z}_{1}}, {{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-3-4\text{i} \right|=1\) và \(\left| {{z}_{2}}-3-4\text{i} \right|=\frac{1}{2}\). Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a-2b=12. Giá trị nhỏ nhất của \(P=\left| z-{{z}_{1}} \right|+\left| z-2{{z}_{2}} \right|+2\) bằng:
A. \({P_{\min }} = \frac{{\sqrt {9945} }}{{11}}\)
B. \({P_{\min }} = 5 - 2\sqrt 3 \)
C. \({P_{\min }} = \frac{{\sqrt {9945} }}{{13}}\)
D. \({P_{\min }} = 5 + 2\sqrt 5 \)
Lời giải của giáo viên
ToanVN.com
Gọi \({{M}_{1}}, {{M}_{2}}, M\) lần lượt là điểm biểu diễn cho số phức \({{z}_{1}}, 2{{z}_{2}}, z\) trên hệ trục tọa độ Oxy. Khi đó quỹ tích của điểm \({{M}_{1}}\) là đường tròn \(\left( {{C}_{1}} \right)\) tâm \(I\left( 3;4 \right)\), bán kính R=1; quỹ tích của điểm \({{M}_{2}}\) là đường \(\left( {{C}_{2}} \right)\) tròn tâm \(I\left( 6;8 \right)\), bán kính R=1; quỹ tích của điểm M là đường thẳng d:3x-2y-12=0.
Bài toán trở thành tìm giá trị nhỏ nhất của \(M{{M}_{1}}+M{{M}_{2}}+2\).
.jpg.png)
Gọi \(\left( {{C}_{3}} \right)\) có tâm \({{I}_{3}}\left( \frac{138}{13};\frac{64}{13} \right)\), R=1 là đường tròn đối xứng với \(\left( {{C}_{2}} \right)\) qua d. Khi đó \(\min \left( M{{M}_{1}}+M{{M}_{2}}+2 \right)=\min \left( M{{M}_{1}}+M{{M}_{3}}+2 \right)\) với \({{M}_{3}}\in \left( {{C}_{3}} \right)\).
Gọi A, B lần lượt là giao điểm của đoạn thẳng \({{I}_{1}}{{I}_{3}}\) với \(\left( {{C}_{1}} \right), \left( {{C}_{3}} \right)\). Khi đó với mọi điểm \({{M}_{1}}\in \left( {{C}_{1}} \right), {{M}_{3}}\in \left( {{C}_{3}} \right), M\in d\) ta có \(M{{M}_{1}}+M{{M}_{3}}+2\ge AB+2\), dấu "=" xảy ra khi \({{M}_{1}}\equiv A,{{M}_{3}}\equiv B\).
Do đó \({{P}_{\min }}=AB+2={{I}_{1}}{{I}_{3}}-2+2={{I}_{1}}{{I}_{3}}=\frac{\sqrt{9945}}{13}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số \(y=f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng \(\left( \alpha\right)\) chứa trục Ox và đi qua điểm \(M\left( 2;-1;3 \right)\).
Cho tứ diện đều ABCD có cạnh bằng a. Khoảng cách từ A đến \(\left( BCD \right)\) bằng
Giá trị lớn nhất của hàm số \(f\left( x \right)=-{{x}^{4}}+12{{x}^{2}}+1\) trên đoạn \(\left[ -1;2 \right]\) bằng
Trong không gian Oxyz, cho mặt cầu \((S):{{(x-1)}^{2}}+{{(y+1)}^{2}}+{{(z-1)}^{2}}=6\) tâm I. Gọi \((\alpha )\) là mặt phẳng vuông góc với đường thẳng \(d:\frac{x+1}{1}=\frac{y-3}{-4}=\frac{z}{1}\) và cắt mặt cầu (S) theo đường tròn (C) sao cho khối nón có đỉnh I, đáy là đường tròn (C) có thể tích lớn nhất. Biết \((\alpha )\) không đi qua gốc tọa độ, gọi \(H({{x}_{H}},{{y}_{H}},{{z}_{H}})\) là tâm của đường tròn (C). Giá trị của biểu thức \(T={{x}_{H}}+{{y}_{H}}+{{z}_{H}}\) bằng
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=-2\) và \(\int\limits_{1}^{5}{\left( 2f\left( x \right) \right)\text{d}x}=6\) khi đó \(\int\limits_{0}^{5}{f\left( x \right)\text{d}x}\) bằng
Đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x-2}{x+4}\) là:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I và bán kính R của \(\left( S \right)\) là
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng vuông góc với đường thẳng \(\frac{x-2}{1}=\frac{y+2}{-2}=\frac{z}{3}\) và đi qua điểm \(A\left( 3;-4;5 \right)\) là
Số giao điểm của đồ thị của hàm số \(y={{x}^{3}}-{{x}^{2}}-x-2\) với trục hoành?
Số giá trị nguyên của tham số thực m để hàm số \(y=\frac{mx-2}{-2x+m}\) nghịch biến trên khoảng \(\left( \frac{1}{2};\,+\infty\right)\) là
Cho hàm số \(y=g\left( x \right)\) có bảng biến thiên như sau:
.png)
Điểm cực tiểu của hàm số đã cho là:
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( 1;3;2 \right), B\left( 3;-1;4 \right)\). Tìm tọa độ trung điểm I của AB.
Cho hình chóp S.AB có đáy ABC là tam giác vuông cân tại B với AC=a, biết SA vuông góc với mặt phẳng \(\left( ABC \right)\) và SB hợp với \(\left( ABC \right)\) một góc \(60{}^\circ \). Thể tích của khối chóp S.ABC bằng
Tính tích phân \(I=\int\limits_{1}^{2}{\frac{1}{2x-1}\text{d}x}\)


